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This paper examines the link between
housing supply restrictions and increased
exposure to natural hazard risks in the
United States. Overall exposure to natu-
ral hazard risk increases if housing supply
is more elastic in riskier areas. However,
evaluating this is complex due to the va-
riety of hazards and their differing spatial
correlations with housing supply. For ex-
ample, wildfire risk is expected where the
urban periphery meets flammable vegeta-
tion, while flooding risk is more likely along
coasts. Moreover, housing supply restric-
tions could either encourage or discourage
exposure to natural hazard risk at differ-
ent levels. If, within cities, less elastic sup-
ply in safer areas leads to higher growth
in at-risk areas, but riskier cities tend to
be more stringently regulated, then restric-
tions would drive people to safer cities but
also to the riskiest parts of those cities.

I show that urban growth has heightened
exposure to natural hazard risk, consider-
ing a wide range of extreme climate threats.
This exposure growth is driven both by the
growth of the riskiest cities and the riski-
est areas within cities. I find no evidence
that strict housing supply regulations de-
ter people from the riskiest cities. However,
within cities, less elastic housing supply in
safe areas leads to higher growth in at-risk
areas. These findings complement those in
Indaco and Ortega (2023) and Amornsiri-
panitch and Wylie (2023) by focusing on
the geography of housing supply. In Ospi-
tal (2023), I argue that the distribution of
land-use regulations within San Diego leads
to increased exposure to wildfire risk. In
this paper, I extend that argument by con-
sidering many hazards and all the U.S.
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I. Decomposing Growth in At-risk
Areas Within and Between Cities

In this section I investigate the patterns
of natural hazard risk exposure and hous-
ing growth in the United States. I show
that there has been faster growth in areas
more at risk, and that it has happened both
between and within cities.
I measure the current risk of natural haz-

ards using tract-level expected losses from
FEMA’s National Risk Index (NRI). I add
up the expected losses in dollars per capita
from 17 different natural hazards and then
group tracts nationwide into quantiles of
risk exposure. The NRI calculates Ex-
pected Annual Losses (EAL) by multiply-
ing exposed values by a hazard’s annual fre-
quency and historical loss ratios. This is
done separately for population loss (mon-
etized using a Value of Statistical Life ap-
proach) and for the value of exposed build-
ings. To arrive at expected losses per
capita, I divide the EAL for buildings and
people by the population of the tract. This
final step ensures that my measure of risk
is not mechanically influenced by the sheer
number of buildings or people at risk.1

Over the past decades, housing growth
has disproportionately happened in areas
of the United States with the highest natu-

1The 17 hazards are: Avalanche, Coastal/Riverine
Flooding, Cold/Heat Wave, Earthquake, Hail, Hurri-

cane, Ice Storm, Landslide, Lightning, Strong Wind,
Tornado, Tsunami, Volcanic Activity, andWildfire. The
data sources vary by hazard, but the periods considered
in the calculations of frequencies and loss ratios end in

2021 at the latest. Tract populations are measured as
of 2016, and buildings are valued based on 2018 val-

uations from the 2010 Census. The NRI also reports
EALs for agriculture, but I omit those due to the urban

focus of this paper. I exclude Drought because, in the
data, it only affects agriculture, not people or buildings.
The inflation-adjusted Value of Statistical Life used by

FEMA treats each fatality or ten injuries as $7.6 million
of loss in 2020 U.S. dollars.
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ral hazard risk, but in recent years, fewer
new homes have been built in the riski-
est places. I combine the natural hazard
risk from FEMA with housing unit counts
from the Census and the American Com-
munity Survey, as reported in the Longi-
tudinal Tract Data Base (LTDB). Of the
61.2 million homes added since 1970, 13.9
million (22.7%) are in the 20% riskiest cen-
sus tracts in the country, as measured by
expected losses. A total of 27.4 million
(44.8%) homes were added in the top 40%
riskiest census tracts. I we consider more
recent changes since the year 2000, the re-
lationship is not monotonic: the number of
homes has increased more in the second and
third quintiles of expected losses, and less so
in the top two quintiles of expected losses.
Next, I perform exact decompositions of

housing growth to explore whether this ag-
gregate increase in exposure is due to more
homes being built in risky cities or to more
homes being build in riskier parts of the
city. Specifically, I define the national expo-
sure to natural hazard risk εrt as the fraction
of the total housing stock that is on tracts
in quantile r of expected losses. Then I de-
compose the change in national exposure
into three components:

(1)

∆εr =
∑

c/∈Newr

hct−1∆εrc︸ ︷︷ ︸
Within cities

+
∑

c/∈Newr

∆hc

(
εrct − εrt−1

)
︸ ︷︷ ︸

Across cities

+
∑

c∈Newr

hct

(
εrct − εrt−1

)
︸ ︷︷ ︸

New development

,

where ∆x ≡ xt − xt−1 indicates changes
in any variable xt measured in year t, hct

is city c’s share of national housing stock,
εrct is city c’s share of housing stock at risk
r, and Newr ≡

{
c : εrct−1 = 0

}
is the set of

cities that did not have homes exposed to
expected losses in quantile r in the initial
period.2

2I define cities as Core-Based Statistical Areas (CB-
SAs) or Combined Statistical Areas (CSAs) of adjacent

CBSAs, based on economic ties measured by commut-

The “Within” component of the decom-
position represents the change in expo-
sure that would have resulted had relative
city sizes been fixed, but city-level expo-
sure shares evolved as in the data. That
is, it captures whether more homes are
going to the riskiest parts within cities.
The “Across” component captures aggre-
gate changes due to changes in the hous-
ing distribution across cities. The “new de-
velopment” component captures aggregate
increases in exposure due to homes built
in risky tracts that where initially undevel-
oped. Subtracting the initial national expo-
sure (εrt−1) captures that the contribution
of newly-developed tracts to aggregate ex-
posure changes can be positive or negative,
depending on whether the risk exposure of
the new tracts is above or below the old
national level.

The top row of Figure I shows the change
in national exposure (the left-hand side of
the decomposition in Equation 1) consider-
ing 1970-2017 changes in Panel A and 2000-
2017 in Panel B. As a result of the new
flow of homes since 1970, a greater fraction
of the housing stock is now on the riski-
est places. The same pattern emerges if we
instead consider more recent changes since
2000, except that the relationship again is
not monotonic at the top: while the frac-
tion of homes in the riskiest quintile has
increased, it has increased by less than the
one in the second-to-riskiest group of tracts.

The results of the decomposition indicate
that all three margins significantly impact
natural hazard exposure. Focusing first on
the long-term changes from 1970 (Panel C),
all three margins contribute to the growth
of the two riskiest quintiles. The cross-
city component and new development were
particularly important for the growth of
the two riskiest groups of tracts, especially
the top quintile. The “Within” compo-
nent, on the other hand, contributes most
to the growth of the fourth quintile and
not much to the top quintile. When ap-
plying the decomposition with 2 instead of

ing patterns. This captures overlapping labor markets,

making tracts closer substitutes for each other within a

city, and cities substitutes for other cities.
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5 risk quantiles, we find that exposure to
above-median expected losses increased by
9.1 percentage points, with the “Within”
component accounting for 30.3% of the in-
crease, the “Across” component accounting
for 39.4%, and the “New” component for
the remaining 30.3%.
In the more recent period from 2000 to

2017 (Panel D of Figure I), the margin of
new development is irrelevant because vir-
tually all tracts were already developed in
2000. In this period, the non-monotonic
pattern of the within-city component ac-
centuates, to the point where it contributes
negatively to the growth of the riskiest quin-
tile. Applying the decomposition with 2
risk quantiles, the “Within” component ac-
counts for 19.7% of the increase in expo-
sure to above-median expected losses. The
“Across” component accounts for the re-
maining 80.3%.

II. Housing Supply Regulation
Stringency Across Cities

In this section, I describe how the cross-
city components of exposure growth ob-
tained in the previous section are related
to the stringency of regulation restricting
housing supply. To measure regulation, I
use the survey-based Wharton Residential
Land Use Regulation Index from Gyourko,
Hartley and Krimmel (2019).
I proceed by plotting exposure-weighted

city growth in 2000-2017 against the Whar-
ton Index (Figure I, Panel E). The former
correspond to the city-level elements of the
cross-city component in the decomposition
formula: ∆hc

(
εrct − εrt−1

)
. I further divide

them by the total exposure change (∆εr),
so the points add up to the “Between” term
in Equation 1. The Wharton Index is only
available for 44 cities, so I grouped the ones
remaining and plotted their sum with a
value of zero, which by construction is in
the middle of the distribution. I focus on
the most recent period of 2000-2017 to be
closer in time to the Wharton Index. To
have a single measure of exposure, I repeat
the decomposition but with 2 quantiles in-
stead of 5 quantiles, so again εt measures
the fraction of homes exposed to above-

median expected losses.
The figure shows no evidence of strictly

regulated cities offsetting the aggregate in-
crease in natural hazard risk exposure. On
the one hand, we see some cities with lax
regulations, such as Cleveland or Detroit,
contributing to the national increase, and
other more strictly regulated cities, such as
Phoenix or San Francisco, offsetting the na-
tional trend. These examples would be con-
sistent with a scenario where strict regu-
lations keep people away from the riskiest
cities. However, we also have the counter-
point of Los Angeles and New York, both
strictly regulated, contributing significantly
to aggregate exposure.

III. Housing Supply in the Safest
Areas Within Cities

In this section, I show that growth in
risky areas was higher in cities where areas
with lower natural hazard risk had a less
elastic housing supply. To do so, I extend
the data with census tract–level estimates
of housing supply elasticities from Baum-
Snow and Han (2021).3

As a first pass, I calculate the correlation
between the price elasticity of housing sup-
ply in 2001 and the rank of expected losses
for each city. Panel F of Figure I shows a
scatter plot of these correlations (on the x-
axis) against the within-city elements from
the growth decomposition (on the y-axis).
As in the previous section, I focus on the
most recent period of 2000-2017 and con-
sider exposure to above-median expected
losses from natural hazards. There is no
apparent relationship between the variables
when the correlation of elasticities and risk
is negative, but a positive one when the cor-
relation becomes positive. This means that
the within-city component of growth in na-
tional exposure is driven by cities where
the riskiest tracts have more elastic sup-

3I use their linear IV estimates. I set the elasticities

that are estimated to be negative equal to the minimum
non-zero estimate. I prefer this approach over excluding

the negative elasticities because the goal of this exercise

is to study the effect of having safe areas with low elas-
ticities. However, tracts with constrained supply likely

have less price and quantity variation, making it difficult
to estimate a precise small number.
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Figure 1. Decomposition of growth in national fraction of homes at risk from 1970-2017 and 2000-2017.
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ply, such as Chicago, Minneapolis, and New
York. However, we must note two outliers:
Dallas, with low correlation and large expo-
sure growth, and Las Vegas, with low cor-
relation and low exposure growth.

Next, I run regressions of the growth in
number of homes since 2000 on housing sup-
ply elasticities in the year 2001 and the cur-
rent distribution of natural hazard risk:

(2)
∆lnHi = αRi + βRiE

Safe

c(i)

+γRiE
Risky

c(i) + µc(i) + ei,

where i indexes census tracts and c(i) the
city where tract i is located. The left-
hand side is the change in log housing units
between 2000 and 2017. The variable Ri

is a dummy indicating that the tract is
among the top 50% riskiest in the country.

The variable E
Safe

c is the average housing
supply elasticities among safe tracts in the

city (i.e., Ri = 0), and E
Risky

c the average
among risky tracts. Finally, µc is a city
fixed effect, and ei is the residual.

The coefficient β measures how housing
growth changes if the price elasticity of
housing supply in the safe parts of the city
is increased, and the presence of a city-level
fixed effect means that the comparison is
using only variation within cities. Control-
ling for the average housing supply elastic-
ity across all risky tracts in the city helps
ruling out differential trends in the growth
of risky places in cities that are more or less
elastic.

I estimate the regression by OLS and
cluster standard errors at the level of the
CSA by the risky-place indicator. I ob-
tain an estimate α̂ = −0.013 (s.e. 0.024),
not significantly different from zero. The
estimate β̂ = −0.121 (s.e. 0.054) means
that reducing the housing supply elastic-
ity of safe places by one standard deviation
(0.145) leads to riskier tracts growing by
1.8% more than the safer ones. The coeffi-
cient on the interaction with average elas-
ticity in risky areas has opposite sign γ̂ =
0.130 (s.e. 0.078), as expected, since hous-
ing growth is a function of it by construc-
tion. Taken together, the estimates predict
that risky places will grow more than safe

places when the average safe-place elastic-
ity is greater than the risky-place elasticity
by 0.022. The cross-city median difference
between safe and risky area average elastic-
ities is 0.025. As further illustration, New
York and Kansas City have similar observed
average elasticity in risky places (0.435 and
0.443), but the safe-area elasticity of New
York (0.191) predicts that risky areas grow
4.7% more than safe areas while the one of
Kansas City (0.436) predicts that risky ar-
eas grow only 1.7% more.

IV. Conclusion

Exposure to natural hazard risks in the
U.S. grew due to the growth of the riski-
est cities and the distribution of housing
growth in the riskiest areas within cities.
Across cities, there is no evidence that strict
housing supply regulations are keeping peo-
ple away from the riskiest cities, although
the data is coarse. However, within cities,
less elastic housing supply in safe areas is
associated to higher growth in at-risk areas.
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